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The construction of high-performance data pipelines for analytics involves the careful 
balancing of numerous concerns. We have found that it is possible to build very high 
performance pipelines using hybrid SQL/NoSQL systems and utilizing some of the 
principles of functional programming, without resorting to resource- and maintenance-
intensive solutions such as the Hadoop ecosystem. We call pipelines constructed 
according to these principles HFP’s, or Hybrid Functional Pipelines. 
 
The relational database management system, or RDBMS, is the concrete realization of 
design principles first set forth by E.F. Codd and Chris Date in the late 60’s/early 70’s. 
The seminal work on these principles is Codd’s 1970 book “A Relational Model of Data 
for Large Shared Data Banks”. Relational theory, which is a relative of set theory, 
proposed a ruleset for structuring data based on set membership and designed to 
minimize the cost of updating records. Databases build around these rulesets quickly 
became the de facto standard for business data management; to this day, most of the 
world’s business data is stored in relational databases.  
 
These databases have a few important characteristics in common: 
- They are queried using SQL 
- They require pre-defined schemas (also specified using SQL) in order to store data 
- They use ACID (Atomic, Consistent, Isolated, Durable) transaction semantics for write 
operations 
 
The tradeoff here is that we accept higher write latencies and a priori constraints on the 
format of records to be stored, in exchange for greater data reliability and self-
consistency. 
 
More recently, a generation of databases has emerged which does not use the relational 
ruleset; these are colloquially known as NoSQL databases (although some of them do 
allow queries using a dialect of SQL). Much has been made of the “higher performance” 
offered by NoSQL databases, the implication being that defining data schemas and 
querying stored data using SQL is itself inimical to performance. 
 
The truth is significantly more complex; relational databases are capable of very good 



performance if designed, provisioned, and tuned properly, and NoSQL databases can 
give quite bad performance if correct practices are not observed. A good deal of the 
performance penalty incurred by relational databases is a write penalty; the logic that 
governs ACID transaction semantics is nontrivial and at least in part dependent on disk 
I/O, which can blunt the advantage of faster processors and more memory. A database 
which holds all its records in memory, for example, would be a good deal faster (all 
things being equal) than one which saved records to disk; the tradeoff being that 
catastrophic power failure would result in 100% data loss. Likewise, a database which 
does not enforce ACID transaction semantics can be significantly faster than one which 
does not, with the caveat that multi-client, update-intensive operations run a much 
higher risk of introducing errors and inconsistencies into the 
data. 
 
When we consider data analytics, we are usually considering the question of how to 
efficiently deal with business data which is not in the day-to-day, front-office 
transaction processing stream. This gives us more flexibility with respect to how we 
structure and store data, because: 
 

 Analytical (as opposed to online-transactional) data operations are read-
intensive, not write-intensive 

 We can reload data into an analytical store at will, so we can use more ephemeral 
datastores; in such cases, some amount of reload time is the only penalty for 
catastrophic failure of an analytics computing system 

 
If we further stipulate the functional-programming precept of immutability as a core 
feature of our pipeline design, we reap the additional benefit of being able to use 
relational databases in a read-only way, which gives us: 
 

 The ability to use an already well-understood query language (SQL) and a 
wealth of preexisting reporting tools 

 A way to bypass resource-intensive transaction semantics most of the time; our 
database becomes a WORM (Write Once, Read Many) datastore 

 
 
Design Metaphors and Patterns 
In an HFP (Hybrid Functional Pipeline), we do many of the tasks which are common to 
other pipelines; we still must perform some sort of ETL (Extract, Transform, and Load) 
on data, and we must provide a mechanism for querying processed records. 
 
 



 
The key concepts that characterize HFP’s are: 
 

 Separation of concerns between so-called raw records and cooked records 
 Immutability (updates are actually inserts, so no data is ever overwritten) 
 Journaling (the pipeline keeps a granular record of its own operations) 
 Data operations are linear in the core of the pipeline and two-dimensional only at 

the edges 
 Out-of-order operation 

 
 
The Raw and The Cooked 
A raw record, for our purposes, is one which is structurally correct but may still contain 
data errors; an example would be a sales record whose date format is correct, but in which 
the date itself is wrong. A cooked record is one which has been corrected and from which 
we can generate a record in the output datastore. (Note that input records, which come 
directly from our source data, may not always make it into the pipeline; a record which 
is structurally incorrect should not be admitted as raw, but should instead be stored in a 
holding area and logged as could-not-process. This allows core pipeline logic to be 
simpler, as it can proceed from a baseline set of assumptions about record structure.) 
  
An HFP requires strict separation of concerns between the segments of the pipeline 
which handle raw records, and those which handle cooked records. If we map this onto 
the traditional ETL data processing paradigm, we would say that E, T, and L are each 
discrete modules mostly decoupled from each other. Extract does not care about 
transforming records, but only passes structurally-correct data to the Transform 
module. Transform does not care where records came from – disk, memory, network – 
but only concerns itself with correcting errors or adding specified enhancements to 
business records. 
 
This separation of concerns also means that we can write multiple Extract modules: one 
for each external data source. Extract communicates with the other modules in the 
pipeline solely by writing set of name-value pairs representing the source record (plus 
some metadata) to the pipeline datastore. 
 
 
Immutable Data 
Within the pipeline core, updates are actually inserts; the logic in Transform does not 
change the records passed by Extract. Rather, it copies them into its own portion of the 
datastore and applies updates to the copied records. In this way we can ensure that no 



two pipeline clients will ever contend to update a record; we never need lock records, 
and there is a built-in audit trail of what changed and when. 
 
Once records have been “updated” by Transform logic, they (or more accurately 
speaking, their keys) are handed to the Load module, which is solely responsible for 
writing the records into a datastore optimized for the specific analytical queries desired 
by stakeholders. 
 
 
Journaling 
Each of the three basic operation types (E, T, L) performed by a hybrid functional 
pipeline is journaled, using a suitably performant NoSQL database (we prefer 
Couchbase for its ease-of-use, scale-out ability, and SQL query semantics). Tasks should 
be journaled when they are started and when they are completed, and each journal 
entry should contain, at minimum, the operation type under way, the UNIX process ID 
of the initiating program, a timestamp, and a task completion status. 
 
In this way, we accumulate useful metrics simply as a side effect of operating the 
pipeline; for example, we can generate a simple heat map or performance profile by 
issuing a SELECT * for all the journal records where the delta between the start time 
and completion time exceeds some threshold. 
 
Additionally, if a long-running process in our pipeline dies, we can know 
approximately where it failed and take steps to either purge and re-import missing 
data, or backfill the datastore before omissions cause problems in the downstream 
analytics. 
 
 
Linear vs. Two-Dimensional Data Operations 
A linear, or one-dimensional, data operation is one that returns a list of records based 
on a simple spatial or extrinsic predicate: for example, “give me the next 10K records 
from the input queue” or “show all records which were ingested in the last 30 minutes”.  
A two-dimensional data operation, by contrast, is more like a query as commonly 
understood. It is typically issued against a database and returns an answer set based on 
intrinsic and possibly complex predicates; for example, “give me all the sales records 
where the amount paid is greater than X”. 
 
Data operations at the edge of the pipeline can be two-dimensional, but operations in 
the core of the pipeline should, to the extent possible, always be linear. 
 



The essence of this design feature is that no logic in the core of the pipeline should ever 
execute a query. The reason, simply put, is performance. Linear operations can return the 
correct answer set without introspecting into the data and without engaging a 
potentially expensive query-language runtime. By contrast, a query needs to be 
marshaled across a language binding or other run-time interface, parsed and possibly 
optimized by the query planner, and executed by the database engine – after which the 
answer set needs to be transmitted back into the caller’s process space.   
Needless to say, even in a well-tuned database, this involves latencies which can greatly 
exceed that of a relatively simple data copy. When we are running analytics, those 
latencies are simply the cost of doing business. But note that the purpose of a data 
pipeline is not to perform analytics; it is to capture and transform records and write 
them into a datastore against which our end users perform analytics. 
 
In cases where queries are unavoidable for whatever reason, those queries should be 
performed in advance (say, when the pipeline is spun up) and the results cached in 
memory, where they can be accessed using a simple lookup.  
 
 
Out-Of-Order Operation 
We have seen a variety of ETL “workflow” tools (such as Luigi and Airflow) designed 
to guarantee the in-order execution of a series of steps in a data pipeline. The execution 
order may be a simple linear succession, or a more complicated flow represented by, 
say, a directed acyclic graph. Where such tools are in use, there is often a sensitive 
dependence on not just the order of execution, but the presence of secondary execution 
artifacts (for example, logs or intermediate data-output files) which must be present 
after the completion of one step in order for subsequent steps to run.   
  
We find that while such tools may sometimes be genuinely necessary, their use is often 
a sign of flaws in the underlying pipeline design. One of the hallmarks of a good design 
is the ability of each of the steps in the pipeline to execute out-of-order; that is, with no 
consideration as to which step (if any) ran prior, or which will run subsequently.  
 
HF pipelines accomplish this design objective using a combination of two technologies: 
NoSQL key-value databases and high-capacity in-memory datastores such as redis. 
 
For example: say the Extract module has pulled a source record and performed some 
initial checks on it, and is now ready for it to be transformed. In our theoretical HF 
pipeline, what would happen is that Extract would write the record to its core datastore 
(say, Couchbase) and get back a unique key. It will then write that unique key to a redis 



queue, which implicitly informs the next stage of the pipeline that there is a new record 
waiting to be transformed. 
 
When the Transform module executes, it pulls a linear dataset (a list of keys) from the 
in-memory queue and deals with them in order.  But note that the Transform module 
need not be explicitly notified, either by IPC or by a secondary artifact such as a signal 
file, that there are records ready to process. Upon execution it should always do the 
same thing: ask the in-memory queue for a set of keys. A nonempty set is a signal that 
there is work to do; an empty set is simply a short-circuit condition, prompting either a 
normal shutdown (in the case of a cron job) or a sleep for the specified polling interval.  
 
Pipelines which are brittle with respect to execution order are most often found in 
enterprises employing batch-processing methods. Continuous real-time, or 
“streaming”, data pipelines -- which may use producer/consumer queues to pass 
records between processes -- are a different matter; but there we see quite clearly the 
importance of processes which are completely insensitive to execution order. Data 
processors in streaming pipelines are much closer to being simple event handlers, and it 
is axiomatic that a properly-designed event handler is completely decoupled from other 
handlers, even those in the same process space. 
 
 
Case Study: HFP In Practice 
A major Swedish online retailer needed sales data analytics. Their starting condition 
was that transactional sales records were offloaded daily to a data lake on Amazon 
Redshift; some of those records contained price information that was incorrectly 
calculated due to differences in local fees and taxes inside and outside the EU. Their 
analysts were familiar with desktop cloud-based tools such as Mixpanel and Sisense. 
What they wanted was a pipeline connecting their data lake with an analytics database 
which could be queried directly by the tools their analysts were already using. 
 
We provisioned a group of machines in the virtual datacenter (an AWS Virtual Private 
Cloud) consisting of: 
 

 A Couchbase database cluster 
 A Redis instance 
 A “coordinator” instance hosting all the Python scripts representing the pipeline 

logic 
 



In addition, we provisioned a target database (also on Redshift) which featured a 
handful of OLAP star schemas. The most important of these was the order_lineitems 
schema, containing: 
 
 
 
 

 
 A single fact table representing a denormalized set of orders and their 

constituent lineitems 
 Dimension tables representing the originating country for each order, the hour of 

the day in which the order was placed, the order date, the SKU of the lineitem, 
and the vendor ID for the SKU 

 
We generated extract, transform, and load scripts as discrete modules to operate the 
pipeline. Each script was capable of being run independently and out-of-order, and the 
transform and load scripts were also capable of being run in parallel (multiple 
transform and/or load processes executing simultaneously). All processes journaled 
their activity to a Couchbase bucket designated for logging, and used a Couchbase-
hosted Memcached bucket for accessing frequently-used data. 
 
The extract script performed data extraction from Redshift to temporary local storage, 
then read records from local storage into Couchbase; each CSV file containing N valid 
records resulted in N raw data documents in a Couchbase bucket and N corresponding 
document keys in a named Redis queue. 
 
The transform script read keys from the Redis queue, serially retrieved the 
corresponding Couchbase records, transformed them in-memory, and wrote the results 
into a new bucket, also in Couchbase. For every transformed record written, the 
transform script would write the corresponding key to a Redis queue for cooked 
records. 
 
The load script retrieved the cooked records from Couchbase (again, pulling their keys 
from Redis and performing a simple key-value lookup), accumulated the output 
records in a CSV file, and issued bulk-insert instructions to the OLAP datastore in 
Redshift. 
 
From there, analysts on the ground were issued credentials to connect directly to the 
Redshift datastore and were able to use the tools of their choice. Because of the nature of 



OLAP schemas, these queries were highly performant, yet easy to reason about and 
debug. 
 
The delivered pipeline easily met the specification; on an under-provisioned cluster, 
without tuning, we clocked its performance at ~10 million records per 4-hour overnight 
run, which exceeded the client’s daily sales volume. Additionally, the client was now 
ready to move from batch to streaming data ingest if the need arose. Because the 
transform and load pipelines had no knowledge of where source data came from or 
how it arrived, we could upgrade the command-line driven extract script to ingest 
records in real time simply by wrapping it in an HTTP-based microservice – with no 
change in how it communicated with downstream pipeline processes. 
 
Hybrid Functional Pipelines utilize the most desirable aspects of modern SQL and 
NoSQL datastores to good effect. They allow data consumers to remain in the toolsets 
that give them the highest productivity, while allowing systems designers to trade 
storage and memory for raw performance. Their fundamental design principles are 
those of all good software: separation of concerns, modularity, immutability, and 
conscientious logging and recordkeeping. Also, the use of cluster-based key-value 
datastores in the pipeline core allow HFP’s to scale-out to a remarkable degree without 
forcing teams to invest in complex, high-maintenance solutions. 
 
 
Dexter Taylor 
Principal, Binary Machines 


